coमDPUTE science for FuId
prinaley
| ssue 1

> Logical Thinking Puzzles
$>$ and more...

## Logical Thinking

Being able to think clearly and logically is very important for programmers, engineers and scientists.

-Write a number in each square choosing from $1,2,3$ and 4.

- Each row and column must contain each of $1,2,3$ and 4 exactly once and so add up to 10 .


Logical thinking helps programmers work out the instructions needed to make sure a program works.

## $4 \times 4$ Sudoku

Fill in the grid so that each row AND each column AND each corner box of four squares contains the numbers: 1, 2, 3 and 4 once and only once.


HINT: Find a row with more than one number already filled in. Check if numbers in the columns block what numbers could be in the gaps.

Tick the circle when you have attempted the puzzle and so practised the skill.


## Attention to detail

Spotting differences needs attention to detail. So does finding mistakes in computer programs (called "bugs").


## Spot the Difference

Can you spot 10 differences between the two Scratch programs below?
Scratch is a programming language. If you've not played with it yet, try it out at scratch.mit.edu/ and learn to program.
and bugs, are easier
to spot.
$\rightarrow$


This puzzle is all about patterns. It is about a way to represent numbers.

## Data puzzle Pattern

Work out and complete the algorithmic pattern that goes in grid D. This pattern is based on the way numbers are represented in a computer.


## Logical Thinking

Logical Thinking is one of the most important skills to practice to become a computer scientist.

##  <br> Use logical thinking to fit ALL the words into the grid. <br>  <br> Tick the circle when you have attempted the puzzle and so practised the skill. <br> If only one word of a given length is left, there is one place it goes.

## Digital lmages

Pictures can be stored in a computer as numbers. Each number gives the colour of one small area of the picture, called a pixel. This is the way digital images are stored in a camera.

## Colpur-by -Number Pixel Puzzie

Recreate this picture by colouring each pixel as given by its number. Look up the colour for each number in the key. For example, colour pixels marked 0 in black, and pixels marked 1 in red.

| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 4 | KEY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 4 | 5 | 5 | 5 | 5 | 2 | 2 | 5 | 5 | 5 | 5 | 4 | 5 | 4 | 5 | 0 | Dixe |
| 5 | 4 | 5 | 5 | 5 | 2 | 0 | 2 | 2 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 1 | puzzle picture? |
| 4 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 2 |  |
| 4 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 4 | 5 | 3 |  |
| 5 | 4 | 5 | 5 | 5 | 5 | 1 | 2 | 2 | 1 | 2 | 5 | 5 | 5 | 5 | 4 | 4 | tempted th |
| 5 | 5 | 4 | 5 | 5 | 2 | 2 | 1 | 1 | 2 | 5 | 5 | 4 | 5 | 4 | 5 | 5 | uzzle and so |
| 3 | 5 | 5 | 4 | 5 | 1 | 2 | 2 | 2 | 2 | 2 | 5 | 4 | 5 | 4 | 5 |  | ractised the |
| 5 | 3 | 4 | 5 | 5 | 2 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 4 | 5 | 4 |  |  |
| 5 | 5 | 4 | 3 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 5 | 4 | 5 | 4 | 5 |  |  |
| 5 | 4 | 3 | 5 | 5 | 4 | 5 | 1 | 2 | 1 | 5 | 5 | 4 | 5 | 5 | 4 |  | Repreva |
| 3 | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 1 | 2 | 5 | 3 | 4 | 5 | 4 | 5 |  |  |
| 5 | 3 | 4 | 5 | 4 | 2 | 2 | 5 | 2 | 2 | 5 | 5 | 4 | 3 | 4 | 5 |  |  |
| 3 | 5 | 4 | 5 | 2 | 4 | 5 | 5 | 2 | 5 | 5 | 4 | 5 | 3 | 5 | 4 |  |  |
| 5 | 3 | 4 | 5 | 2 | 2 | 1 | 2 | 2 | 5 | 5 | 5 | 4 | 3 | 5 | 4 |  |  |
| 5 | 4 | 5 | 3 | 4 | 2 | 2 | 2 | 5 | 5 | 5 | 4 | 5 | 5 | 3 | 4 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Image Compression

Images are stored as lots of numbers and they take up lots of storage space. To save space image compression algorithms use patterns in the data to store a picture using fewer numbers. Colour-by-Number Pixel Puzzle

This picture is symmetrical. Knowing that, we have only given half the numbers. Can you still complete the full picture?


Tick the circle when you have attempted the puzzle and so practised the skill.


## Text compression

Text compression algorithms replace messages with ones that use less space to store. One way is to swap words with numbers, then use the same number each time the word appears.


## The poem:

237223162231214920152122

## Codebook:

| $1=\mathrm{A}$ | $14=$ MAKES |
| :--- | :--- |
| $2=$ ALOUD | $15=$ PROUD |
| $3=$ ALWAYS | $16=$ SINGS |
| $4=$ BE | $17=$ SWEET |
| $5=$ BLUE | $18=$ THE |
| $6=$ CLOUD | $19=$ TO |
| $7=$ EVERY | $20=$ VERY |
| $8=$ FLOATING | $21=1941$ |
| $9=$ HIM | $22=136$ |
| $10=$ HOW | $23=2425$ |
| $11=$ IN | $24=1017216$ |
| $12=$ IT | $25=811185$ |
| $13=$ LITTLE |  |

Replace numbers by their entry in the codebook. For example, 13 is replaced by LITTLE and 22 is replaced by 136.13 and 6 are then replaced too.

## Computer-generated Images and art

Images can also be represented by the commands to build them. An early use of Computer generated images (CGI) was to draw natural scenery, so trees and other plants.


Next time you find yourself doodling, draw an algorithmic doodle and explore algorithms for drawing nature. Here is one example.

## To Draw a Rose Bush with Buds:

1. Draw a wavy green line with small lines sticking out at angles from it on either side. Draw red buds from the end of every line. (We have done this first line for you).
2. DoodleDraw from that line as follows.

## To DoodleDraw from

## a chosen line:

1. Draw a new similar wavy line from any point on the chosen line into any empty space. It should have similar lines sticking out and buds.
2. Choose a new existing line and DoodleDraw from that line


Tick the circle when you have attempted the puzzle and so practised the skill.

## Computer Science Skills

With lots of practice you can get better at any skill, whether logical thinking, attention to detail or spotting patterns.


Well done if you have solved all the puzzles! You have great thinking skills and are well on the way to building the skills to be a great Computer Scientist! If not, keep practising. You will get better.

Solutions: Find the answer booklet and copies of puzzle sheets to photocopy for class use at cs4fn.blog/puzzles/ All puzzles Attribution NonCommercial ShareAlike "CC BY-NC-SA". This puzzle book was created by Paul Curzon and Jo Brodie with puzzles also by Kok Ho Huen. Thanks to support from EPSRC on grant EP/W033615/1. Design by Kelly Burrows (kellyburrows@gmail.com)

Engineering and
Physical Sciences Research Council

